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Abstract
Cutting-planes are one of the most important building blocks for solving large-scale integer programming
(IP) problems to (near) optimality. The majority of cutting plane approaches rely on explicit rules to derive
valid inequalities that can separate the target point from the feasible set. Local cuts, on the other hand, seek
to directly derive the facets of the underlying polyhedron and use them as cutting planes. However, current
approaches rely on solving Linear Programming (LP) problems in order to derive such a hyperplane. In this
paper, we present a novel generic approach for learning the facets of the underlying polyhedron by accessing
it implicitly via an enumeration oracle in a reduced dimension. This is achieved by embedding the oracle in a
variant of the Frank-Wolfe algorithm which is capable of generating strong cutting planes, effectively turning
the enumeration oracle into a separation oracle. We demonstrate the effectiveness of our approach with a case
study targeting the multidimensional knapsack problem (MKP).

1. Introduction

In this paper, we deal with integer programs (IP)

max {〈𝑐, 𝑥〉 : 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ Z𝑛}, (IP)

where 𝐴 ∈ Q𝑚×𝑛, 𝑏 ∈ Q𝑚, and 𝑐 ∈ Q𝑛. Let 𝑃 B {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} be the underlying polyhedron and
its integer hull 𝑃𝐼 B conv(𝑃 ∩ Z𝑛). We restrict attention to the case in which all variables are required to
be integral, but the general idea works for mixed-integer programs (MIP) as well. However, the by far most
interesting case is the one we consider here.

Solving IPs is NP-hard in general, however, surprisingly fast algorithms exist in practice [1, 38]. The most
successful approach to solving IPs is based on the branch-and-bound algorithm and its extensions. This
algorithm involves breaking down the original problem into smaller subproblems that are easier to solve
through a process known as branching. By repeatedly branching on subproblems, a search tree is obtained.
The bounding step involves computing upper bounds for subproblems and pruning suboptimal nodes of the
tree in order to avoid enumerating exponentially many subproblems. Upper bounds are generally computed
with the help of Linear Programming (LP) relaxations

max {〈𝑐, 𝑥〉 : 𝑥 ∈ 𝑃}. (LP)

Because the integrality constraints are relaxed, optimal solutions of (LP) provide an upper bound for the
original problem (IP).

. This research was partially conducted within the Research Campus MODAL funded by the German Federal Ministry of Education
and Research (BMBF grant numbers 05M14ZAM, 05M20ZBM) as well as the DFG Cluster of Excellence MATH+ (EXC-2046/1,
project id 390685689) funded by the Deutsche Forschungsgemeinschaft (DFG).
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Alternatively, cutting plane procedures iteratively solve LP-relaxations as long as the solution 𝑥∗ is fractional
in one of the first 𝑝 indices (and thus 𝑥∗ ∉ 𝑃𝐼 ). To remove these solutions 𝑥∗ from the relaxation’s polyhedron,
one adds cutting planes (or cuts) 〈𝛼, 𝑥〉 ≤ 𝛽 with 𝑎 ∈ Q𝑛, 𝛽 ∈ Q, and 〈𝛼, 𝑥∗〉 > 𝛽. The search for such cutting
planes or to determine that none exists is called the separation problem. The strongest cuts are those that
define a facet, i.e., the face 𝑃𝐼 ∩ {𝑥 : 〈𝛼, 𝑥〉 = 𝛽} has co-dimension 1 with respect to 𝑃𝐼 . When the cutting
plane method is combined with branch-and-bound, the resulting algorithm is often called branch-and-cut.
Gomory conducted foundational work in this field, demonstrating that pure cutting plane approaches can solve
integer programs with rational data in a finite number of steps without the need for branching [25, 26, 27].

Gomory’s initial approach to cutting planes suffered from numerical difficulties at that time, preventing pure
cutting plane methods from being effective in practical applications. However, his proposed (Gomory) mixed
integer (GMI) cuts are very efficient if combined with branch-and-bound (see the computational study in [8])
and still are one of the most important types of cutting planes used by contemporary solvers. As more GMI
cuts are added to a problem, their incremental value tends to diminish. To address this issue, modern MIP and
IP solvers use a range of techniques to generate cuts, e.g., mixed-integer-rounding (MIR) inequalities [41],
knapsack covers [22, 31], flow covers [32], lift-and-project cuts [5], {0, 1

2}-Chvátal-Gomory cuts [19], and
others.

Most cutting plane separation algorithms rely on fixed formulas to derive valid inequalities that separate the
target point 𝑥∗ from the polyhedron 𝑃𝐼 . An alternative approach is to directly seek to derive the facets of
𝑃𝐼 that separate the point 𝑥∗. Notice that while the facets of the polyhedron 𝑃 are explicitly known from
the problem definition, the facets of its integer hull 𝑃𝐼 are unknown in general. While the facet-defining
inequalities are intuitively the strongest cuts, they can be relatively expensive to explicitly compute, limiting
their applicability in practice. Local cuts, a type of cutting planes that try to derive facets of 𝑃𝐼 , approach
this problem by deriving facets of 𝑃𝐼 in a reduced dimension, and then lifting those cuts to obtain facets in
the original dimension. In this paper, we will propose a new variant of the Frank-Wolfe algorithm with the
goal of learning the (unknown) facets of 𝑃𝐼 (or at least valid inequalities) in a reduced dimension, which
can then be lifted to the original dimension and be used as strong cutting planes. In our learning approach,
the underlying polyhedron will only be accessed via an algorithmically simple linear optimization oracle, in
contrast to existing approaches, which also need to solve LPs.

1.1 Related Work
Local cuts have first been introduced as “Fenchel cuts” in Boyd [10, 11], who developed an algorithm to
exactly separate inequalities for the knapsack polytope via the equivalence of separation and optimization.
They were subsequently investigated extensively by Applegate et al. [3] for solving the traveling salesman
problem (TSP). Buchheim et al. [17, 18] and Althaus et al. [2] adopted local cuts into their approaches for
solving constrained quadratic 0-1 optimization problems and Steiner-tree problems, respectively. In [21],
Chvátal et al. generalize the local cuts method to general MIP problems.

In the context of knapsack problems, after the aforementioned work of Boyd [10, 11], Boccia [9] introduced
an approach based on local cuts, as stated by Kaparis and Letchford [37]1, who further refined the algorithm.
Vasilyev presented an alternative approach with application to the generalized assignment problem in [45],
see also the comprehensive computational study conducted by Avella et al. in [4]. In [46], Vasilyev et al.
propose a new implementation of this approach, with the goal of making it more efficient. In [30], Gu presents
an extension of the algorithm of Vasilyev et al. [46].

1.2 Contribution
The contributions of this paper can be summarized as follows:

1. We present an efficient, LP-free separation framework that aims to learn local cuts for IPs through the
solution of subproblems. We propose to use a variant of the Frank-Wolfe [23] algorithm to solve the

1. We could not independently verify the claim as we could not access Boccia’s paper online.
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associated separation problem. The resulting framework is general and – given the availability of a
suitable lifting method – applicable to any IP.

2. We propose a new, dynamic stopping criterion for the application of Frank-Wolfe to the separation problem
at hand. This new criterion, derived by exploiting duality information, directly evaluates the strength of
the resulting cut and thus dramatically decreases the number of iterations.

3. We illustrate the benefit of our approach in a case study for the multidimensional knapsack (MKP) problem,
demonstrating its effectiveness. The results show that embedding our method in the academic solver SCIP
leads to 31% faster solving times, on average.

The rest of this paper is organized as follows: In Section 2, the fundamental framework of local cuts and
required notation are introduced. Section 3 presents our approach for the LP-less generation procedure for local
cuts. Section 4 demonstrates how the aforementioned framework can be applied to solve the multidimensional
knapsack problem. Computational experiments are presented in Section 5. Finally, Section 6 summarizes
conclusions and future work.

2. Local Cuts
To describe the idea of local cuts, assume that 𝑃 ⊂ R𝑛 is a polytope, i.e., bounded, and full-dimensional. Then
one considers a small subproblem with underlying polyhedron �̃� ⊆ R𝑘 where 𝑘 ≤ 𝑛. Here 𝑘 is chosen small
enough such that integer optimization problems over �̃� can be solved efficiently in practice, for example, by
enumeration. Consider a projection 𝑥 of the point to be separated 𝑥∗ on R𝑘 . The procedure tries to generate
a valid cut 〈�̃�, 𝑥〉 ≤ 𝛽 with �̃� ∈ Q𝑘 , 𝛽 ∈ Q, such that 〈�̃�, 𝑥〉 > 𝛽, i.e., it cuts off 𝑥 from �̃�. This cut can be
“lifted” to the original space, which yields a cut 〈𝛼, 𝑥〉 ≤ 𝛽 that hopefully cuts off 𝑥∗.

The approach to generate 〈�̃�, 𝑥〉 ≤ 𝛽, in the literature mentioned above, relies on the equivalence between
optimization and separation [29] and can be very briefly explained as follows. By the Minkowski-Weyl
Theorem, we can express �̃� as the convex hull of its vertex set 𝑉 . Let 𝑥0 ∈ �̃� be an interior point. Then
consider the LP

min
𝜆,𝛾
{𝛾 :

∑︁
𝑣∈𝑉

𝑣 𝜆𝑣 + (𝑥 − 𝑥0)𝛾 = 𝑥,
∑︁
𝑣∈𝑉

𝜆𝑣 = 1, 𝜆 ≥ 0}.

The dual problem (𝐷) is

max
𝛼,𝛽
{〈𝑥, 𝛼〉 − 𝛽 : 〈𝑣, 𝛼〉 ≤ 𝛽 ∀𝑣 ∈ 𝑉, 〈𝑥 − 𝑥0, 𝛼〉 ≤ 1}.

Let �̃�, 𝛽 be an optimal solution of (𝐷). Then 〈�̃�, 𝑥〉 ≤ 𝛽 is a valid inequality for �̃�, since by construction
〈𝑣, �̃�〉 ≤ 𝛽 holds for all 𝑣 ∈ 𝑉 and thus by convexity for all points in �̃�. The objective enforces that this cut is
maximally violated by 𝑥 if the optimal value is positive.

Since �̃� may have an exponential number of vertices, problem (𝐷) can be solved by a column generation
algorithm (or cutting plane algorithm in the primal). In each iteration, one needs to solve the following pricing
problem for the current point (�̂�, 𝛽): Decide whether there exists 𝑣 ∈ 𝑉 with 〈𝑣, �̂�〉 > 𝛽. This can be done by
maximizing �̂� over the subproblem �̃�, i.e., one can use a linear optimization oracle for the subproblem. This
subproblem can contain integrality constraints, thereby requiring, again, IP techniques. Note that the most
interesting case is where we operate integer hulls, i.e. �̃� = �̃�𝐼 to generate cuts for 𝑃 = 𝑃𝐼 . In this way, local
cuts can help solving an integer optimization problem over 𝑃. Hence, in the following sections, any reference
to 𝑃, �̃� holds for the integer case as well and our case study illustrates exactly that.

As mentioned above, the strongest cutting planes are those that define facets. The tilting method by Applegate
et al. [3] produces such a facet. Buchheim et al. [17] introduced a different formulation that automatically
produces a facet. Chvátal et al. [21] developed a formulation for general MIPs using linear optimization
oracles. All three approaches use a sequence LPs at their heart; either for tilting a plane or through a
column-generation procedure.
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3. Learning Strong Cuts from Enumeration
The local cuts framework, applicable to general IPs, relies on a sequence of three operators: SEP, FACET
and LIFT. SEP refers to a separation oracle separating the projected point 𝑥 from �̃� that returns a separating
cut 〈�̃�, 𝑥〉 ≤ 𝛽 (or certifies that 𝑥 ∈ �̃�). FACET further refines the cut until it represents a facet of �̃� and
lastly, LIFT transforms the resulting facet into the space of 𝑃 such that it separates 𝑥∗ from 𝑃 with high
probability. In some variants of local cuts, SEP and FACET may be combined into one step similar to [17],
whereas in [21], the tilting process is a separate, concrete embodiment of FACET. Note that that facets of
the subproblem, when lifted, result in the strongest cuts. In practice, it is often sufficient to find good valid
inequalities of �̃�. As mentioned before, the original approach for local cuts through duality requires an
expensive column-generation method which is based on LPs. In this section, we derive an alternative and
LP-less approach.

The general idea of our new approach is sketched in Figure 1: Given a point 𝑥 ∈ R𝑛 that we intend to separate
from 𝑃, we solve the following optimization problem:

𝑦∗ = argmin
𝑦∈�̃�

𝑓 (𝑦), (Separation)

with 𝑓 (𝑦) B 1
2 ‖𝑦 − 𝑥‖

2. Observe that this is effectively the projection of 𝑥 onto �̃� under the ℓ2-norm and that
∇ 𝑓 (𝑦) = (𝑦 − 𝑥).
We solve (Separation) with a suitable variant of the Frank-Wolfe algorithm. The Frank-Wolfe algorithm
[23] (also called: Conditional Gradients [40]) is a method to minimize a smooth convex function 𝑓 over
a compact convex domain 𝑃 by only relying on a First-order Oracle (FO) for 𝑓 , i.e., given a point 𝑥 the
oracle returns ∇ 𝑓 (𝑥) (and potentially 𝑓 (𝑥)) as well as a Linear Minimization Oracle (LMO) (“oracle” for
the remainder of this paper), i.e., given an objective vector 𝑐, the oracle returns 𝑣 ∈ argmin𝑥∈�̃� 〈𝑐, 𝑥〉. The
original Frank-Wolfe algorithm, provided with step sizes 𝛾𝑡 > 0, iteratively calls the LMO to determine
𝑣𝑡 ← argmin𝑣∈C 〈∇ 𝑓 (𝑦𝑡 ), 𝑣〉 and updates the iterate to 𝑦𝑡+1 ← 𝑦𝑡 + 𝛾𝑡 (𝑣𝑡 − 𝑦𝑡 ). There are various step-size
strategies for 𝛾𝑡 , but the actual choice is irrelevant for the discussion here; a common choice is 𝛾𝑡 = 2

𝑡+2 .

The main advantages of using Frank-Wolfe are (1) if there is a LP-less oracle, valid inequalities can be
generated without solving LPs, (2) the computational overhead of the Frank-Wolfe steps compared to calls
to the LMO are very light and, finally, (3) as we will show, for the case of (Separation), we can derive a
new dynamic stopping criterion that can dramatically reduce the number of iterations. Note that we are not
guaranteed to end up with facets, especially when the method is stopped early, however, valid inequalities that
are “close” to being a facet can still serve as strong cutting planes.

For our problem minimizing 𝑓 , the Frank-Wolfe algorithm iteratively calls the oracle and updates its current
iterate through a convex combination of the previous iterate and oracle’s solution vertex. Step by step, the
solution is thus expressed through a convex combination of vertices in �̃� as shown in Figures 1a – 1c. At
convergence, the hyperplane 〈∇ 𝑓 (𝑦∗), 𝑥〉 ≥ 〈∇ 𝑓 (𝑦∗), 𝑦∗〉 forms the desired cut.

3.1 Separation via Conditional Gradients
Let 𝑦∗ ∈ �̃� be an optimal solution to (Separation) and let 𝑥 ∈ �̃� be arbitrary. By convexity, it follows
that 0 ≤ 𝑓 (𝑥) − 𝑓 (𝑦∗) ≤ 〈∇ 𝑓 (𝑥), 𝑥 − 𝑦∗〉 ≤ max𝑣∈�̃� 〈∇ 𝑓 (𝑥), 𝑥 − 𝑣〉 and the last quantity is referred to as
Frank-Wolfe gap (at 𝑥). Moreover, the following lemma holds, which is a direct consequence of the first-order
optimality condition.

Lemma 1 (First-order Optimality Condition). Let 𝑦∗ ∈ �̃�. Then 𝑦∗ is an optimal solution to min𝑦∈�̃� 𝑓 (𝑦) if
and only if 〈∇ 𝑓 (𝑦∗), 𝑦∗ − 𝑣〉 ≤ 0 for all 𝑣 ∈ �̃� (and in particular max𝑣∈�̃� 〈∇ 𝑓 (𝑦∗), 𝑦∗ − 𝑣〉 = 0).

Note that in the constrained case, it does not necessarily hold that ∇ 𝑓 (𝑦∗) = 0, if 𝑦∗ is an optimal solution. In
fact, if the 𝑥 that we want to separate is not contained in �̃�, then 𝑓 (𝑦∗) > 0 and ∇ 𝑓 (𝑦∗) ≠ 0 since 𝑦∗ will lie
on the boundary of �̃�.
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Figure 1: We propose the following approach to separate a fractional point 𝑥 from a full-dimensional polytope
�̃�: We solve min𝑦∈�̃� 𝑓 (𝑦) := 1

2 ‖𝑦 − 𝑥‖
2, i.e., the 𝐿𝑡 projection of 𝑥 onto �̃�, through a variant of a first-order

algorithm. Starting from a random vertex (a), the algorithm iteratively computes the gradient of 𝑓 at the
current iterate 𝑦𝑡 and uses an oracle to solve a linear integer optimization problem over �̃�, building up
an active set of vertices that form iterates through a convex combination (b). At convergence, with high
probability, the optimal solution 𝑦∗ = 𝑦𝑘+𝑡 together with its gradient forms a cut that induces a facet of �̃�:
∇ 𝑓 (𝑦𝑘+𝑡 )>𝑥 ≥ 𝑓 (𝑦𝑘+𝑡 )>𝑦𝑘+𝑡 .

It turns out that we can naturally use an optimal solution 𝑦∗ ∈ �̃� to (Separation) to derive a separating
hyperplane. By Lemma 1:

〈∇ 𝑓 (𝑦∗), 𝑦∗〉 ≤ 〈∇ 𝑓 (𝑦∗), 𝑣〉, (Cut)

which holds for all 𝑣 ∈ �̃�. Moreover, if 𝑥 ∉ �̃�, then (Cut) is violated by 𝑥, i.e., 〈∇ 𝑓 (𝑦∗), 𝑦∗〉 > 〈∇ 𝑓 (𝑦∗), 𝑥〉,
since 〈∇ 𝑓 (𝑦∗), 𝑦∗ − 𝑥〉 ≥ 𝑓 (𝑦∗) − 𝑓 (𝑥) = 𝑓 (𝑦∗) > 0.

Usually, however, we do not solve Problem (Separation) exactly, but rather up to some accuracy. In fact, the
Frank-Wolfe algorithm often uses the Frank-Wolfe gap as a stopping criterion, minimizing the function until
for some iterate 𝑦𝑡 it holds max𝑣∈�̃� 〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣〉 ≤ 𝜀 for some target accuracy 𝜀; note that the Frank-Wolfe
gap converges with the same rate (up to small constant factors) as the primal gap (see e.g., [36]). Given an
accuracy 𝜀 > 0, we obtain the valid inequality

〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 〉 − 𝜀 ≤ 〈∇ 𝑓 (𝑦𝑡 ), 𝑣〉, (approxCut)

for all 𝑣 ∈ �̃�, which also separates 𝑥 from �̃� if it is
√
𝜀-far from �̃�, i.e., ‖𝑦∗ − 𝑥‖ >

√
𝜀:

〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑥〉 − 𝜀 ≥ 𝑓 (𝑦𝑡 ) − 𝑓 (𝑥) − 𝜀 ≥ 𝑓 (𝑦∗) − 𝜀 > 0.

The accuracy 𝜀 is chosen depending on the application; see also [14] for a sensitivity analysis for conditional
gradients.

3.1.1 A dynamic stopping criterion

It turns out, however, that in our case of interest, the above can be significantly improved by exploiting duality
information. This allows us not only to stop the algorithm much earlier, but we also obtain a separating
inequality directly from the associated stopping criterion and duality information.

The stopping criterion is derived from a few simple observations, which provide a new characterization of a
point 𝑥 that can be separated from �̃�. Our starting point is the following standard expansion. Let 𝑣 ∈ �̃� be
arbitrary and let 𝑦𝑡 be an iterate from above. Then,

‖𝑥 − 𝑣‖2 = ‖𝑥 − 𝑦𝑡 ‖2 + ‖𝑦𝑡 − 𝑣‖2 − 2〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣〉,

5



which is equivalent to

〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣〉 = 1
2 ‖𝑥 − 𝑦𝑡 ‖2 + 1

2 ‖𝑦𝑡 − 𝑣‖
2 − 1

2 ‖𝑥 − 𝑣‖
2. (1)

Observe that the left hand-side is the Frank-Wolfe gap expression at iterate 𝑦𝑡 (except for the maximization
over 𝑣 ∈ �̃�) since ∇ 𝑓 (𝑦𝑡 ) = 𝑦𝑡 − 𝑥.

Necessary Condition. Let us first assume ‖𝑦𝑡 − 𝑣‖ < ‖𝑥 − 𝑣‖ for all vertices 𝑣 ∈ �̃� in some iteration 𝑡.
Then (1) yields

〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣〉 < 1
2 ‖𝑥 − 𝑦𝑡 ‖2. (altTest)

If 𝑣𝑡 is the Frank-Wolfe vertex in iteration 𝑡, we obtain:

1
2 ‖𝑦𝑡 − 𝑥‖

2 − 1
2 ‖𝑦

∗ − 𝑥‖2 = 𝑓 (𝑦𝑡 ) − 𝑓 (𝑦∗)
≤ max

𝑣∈𝑃
〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣〉 = 〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣𝑡 〉 = 〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣𝑡 〉 < 1

2 ‖𝑥 − 𝑦𝑡 ‖2.

Subtracting 1
2 ‖𝑥 − 𝑦𝑡 ‖2 on both sides and re-arranging yields: 0 < 1

2 ‖𝑦
∗ − 𝑥‖2, which proves that 𝑥 ∉ �̃�.

Moreover, (1) also immediately provides a separating hyperplane: observe that (altTest) is actually a linear
inequality in 𝑣 and it holds for all 𝑣 ∈ �̃� since the maximum is achieved at a vertex. However, for the choice
𝑣 = 𝑥 the inequality is violated.

Sufficient Condition. Suppose that in each iteration 𝑡 there exists a vertex �̄�𝑡 ∈ �̃� (not to be confused with
the Frank-Wolfe vertex), so that ‖𝑦𝑡 − �̄�𝑡 ‖ ≥ ‖𝑥 − �̄�𝑡 ‖. In this case (1) ensures:

〈𝑦𝑡 − 𝑥, 𝑦𝑡 − �̄�𝑡 〉 = 1
2 ‖𝑥 − 𝑦𝑡 ‖2 + 1

2 ‖𝑦𝑡 − �̄�𝑡 ‖
2 − 1

2 ‖𝑥 − �̄�𝑡 ‖
2 ≥ 1

2 ‖𝑥 − 𝑦𝑡 ‖2.

Thus, the Frank-Wolfe gap satisfies in each iteration 𝑡 that

max
𝑣∈�̃�
〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣〉 ≥ 〈𝑦𝑡 − 𝑥, 𝑦𝑡 − �̄�𝑡 〉 ≥ 1

2 ‖𝑥 − 𝑦𝑡 ‖2,

i.e., the Frank-Wolfe gap upper bounds the distance between the current iterate 𝑦𝑡 and point 𝑥 in each iteration.
Now, the Frank-Wolfe gap converges to 0 as the algorithm progresses, with iterates 𝑦𝑡 ∈ �̃�, so that with the
usual arguments (compactness and limits etc.) it follows that 𝑥 ∈ �̃�. In total, we obtain the following result.
Characterization 2. The following are equivalent:

1. (Non-Membership) 𝑥 ∉ �̃�.
2. (Distance) There exists an iteration 𝑡, so that ‖𝑦𝑡 − 𝑣‖ < ‖𝑥 − 𝑣‖ for all vertices 𝑣 ∈ �̃�.
3. (FW Gap) For some iteration 𝑡, max𝑣∈�̃� 〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣〉 < 1

2 ‖𝑥 − 𝑦𝑡 ‖2.

In particular, Characterization 2.3 can be easily tested within the algorithm, since the Frank-Wolfe gap is
computed anyways. Using this criterion significantly improves the performance of the algorithm. Moreover,
the characterization above can also be combined with standard convergence guarantees to estimate the number
of iterations required to either certify non-membership or membership (up to an 𝜀-error): If we use the vanilla
Frank-Wolfe algorithm, then by standard guarantees (see e.g., [13]) it is known that the Frank-Wolfe gap
𝑔𝑡 = max𝑣∈�̃� 〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣〉 satisfies min0≤𝜏≤𝑡 𝑔𝜏 ≤ 4𝐿𝐷2

𝑡+3 for appropriate positive constants 𝐿 and 𝐷.
Suppose that max𝑣∈�̃� 〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣〉 ≥ 1

2 ‖𝑥 − 𝑦𝑡 ‖2 holds for all iterations 0 ≤ 𝑡 ≤ 𝑇 . We want to estimate
how long this can hold. If 𝑥 ∉ �̃�, then using the convergence guarantee yields:

0 < 1
2 dist(𝑥, �̃�)2 ≤ min

0≤𝜏≤𝑡
1
2 ‖𝑥 − 𝑦𝜏 ‖2 ≤

4𝐿𝐷2

𝑡 + 3
.
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Using 𝐿 = 1 as 𝑓 (𝑦) = 1
2 ‖𝑥 − 𝑦‖2 and rearranging we obtain

𝑡 ≤ 𝑇 B
8𝐷2

dist(𝑥, �̃�)2
− 3,

i.e., after at most 𝑇 iterations we have certified that 𝑥 is not in �̃�. Guarantees for more advanced Frank-Wolfe
variants can be obtained similarly.

3.2 Computational Aspects
A common trait of the local cuts framework is that �̃� is accessed implicitly via an oracle returning vertices.
By far the simplest black-box oracle for any bounded IP is enumeration, which simply evaluates all possible
solutions 𝑥 and picks the best one. If the IP is unbounded, then pure enumeration does not suffice any more and
the oracle needs to take the unboundedness into account. For some problems, we can find problem-specific
algorithms that only enumerate over feasible solutions or otherwise exploit the structure of the problem at hand
to reduce the complexity of enumeration. Examples are the dynamic programming approach for knapsack
problems, see Section 4.1, or directly enumerating 𝑛! possible permutations of 𝑛 items for the linear ordering
problem (LOP).

Similarly to the enumeration oracle, the lifting routine can also avail of problem-specific structure in some
cases. In the case of LOPs, the so-called trivial lifting lemma holds, that is, facet-defining inequalities of the
LOP polytope in dimension 𝑛 also define facets in dimension 𝑟 > 𝑛 [28], meaning that no lifting is needed at
all in this case. For knapsack problems, we can again use a dynamic programming approach, see Section 4.2.

In our implementation, we use the Lazy Away-Step Frank-Wolfe algorithm of [15, 16], which converges
linearly for (Separation). We integrate the novel termination criterion from Characterization 2.3, leading to
Algorithm 1. This algorithm should be thought of as a more advanced version of the vanilla Frank-Wolfe
algorithm. This variant is motivated by the fact that Frank-Wolfe trends towards sparse solutions and hence the
oracle will often return previously-seen vertices. Hence, instead of querying the expensive oracle, one stores
all previous vertices in a active set whose size is controlled through so-called away steps. It provides superior
convergence speed both in iterations and wall-clock time, exploiting the strong convexity of our objective
function of the separation problem; we refer the interested reader to [36, 39, 13] for an overview. Lazification,
to be thought of as an advanced caching technique, further reduces the per-iteration cost by reusing previously
computed LMO solutions.

4. Case Study: The Multidimensional Knapsack Problem
The multidimensional knapsack problem (MKP) is a well-known problem in combinatorial optimization and
is strongly NP-hard. It has been used to address various practical resource allocation problems [24]. The
problem involves maximizing the total profits of selected items, taking into account 𝑚 resource capacity
(knapsack) constraints. There are 𝑛 items that contribute profits given by 𝑐 ∈ Z𝑛. The resource consumption
of item 𝑗 for the 𝑖th knapsack is given by 𝑎𝑖 𝑗 ∈ Z+; this defines a matrix 𝐴 = (𝑎𝑖 𝑗 ) ∈ Z𝑚×𝑛

+ . The capacities
of the knapsacks are given by 𝑏 ∈ Z𝑚. We define binary variables 𝑥 ∈ {0, 1}𝑛 such that 𝑥 𝑗 is equal to 1 if
item 𝑗 is selected and 0 otherwise. Then MKP can be expressed as an IP:

max {〈𝑐, 𝑥〉 : 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ {0, 1}𝑛}. (MKP)

There exists abundant literature on the knapsack problems; we refer the interested reader to the recent survey
by Hojny et al. [34].

We will also test our approach on the instances of the generalized assignment problem (GAP), see Section 5.
GAP is a variant of MKP with applications in scheduling [34]. In addition to the constraints from the MKP
problem, it is required that each of the 𝑛 items be assigned to exactly one knapsack. The interested reader can
find a survey, more details, and a comprehensive reference list in [4, 43].
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Algorithm 1 Lazy Away-Step Frank-Wolfe [15, 16] with explicit active set and early termination

Input: Point 𝑦0 ∈ �̃�, function 𝑓 (𝑦) = 1
2 ‖𝑦 − 𝑥‖

2, step-sizes 𝛾𝑡 > 0, tolerance 𝜖 > 0, oracle Ω
Output: Valid cut 〈�̃�, 𝑥〉 ≤ 𝛽 for �̃� with 〈�̃�, 𝑥〉 > 𝛽 or false if 𝑥 ∈ �̃�.

1: 𝑣0 ← Ω(∇ 𝑓 (𝑦0))
2: S ← {{𝛾0, 𝑣0}(1 − 𝛾0, 𝑦0)}, 𝜙 = 〈∇ 𝑓 (𝑦0), 𝑦0 − 𝑣0〉
3: for 𝑡 = 0 to 𝑡max do
4: if ‖ 𝑓 (𝑦𝑡 )‖ < 𝜖 then
5: return false
6: end if
7: (𝜆𝐿 , 𝑣𝐿) ← min(𝜆,𝑣) ∈S 〈∇ 𝑓 (𝑦𝑡 ), 𝑣〉, (𝜆𝐴, 𝑣𝐴) ← max(𝜆,𝑣) ∈S 〈∇ 𝑓 (𝑦𝑡 ), 𝑣〉
8: if 〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣𝐿〉 ≥ max{〈∇ 𝑓 (𝑦𝑡 ), 𝑣𝐴 − 𝑦𝑡 〉, 𝜙

2 } then
9: 𝑣𝑡+1 ← 𝑣𝐿 , 𝛾max ← 1 {lazy step}

10: else if 〈∇ 𝑓 (𝑦𝑡 ), 𝑣𝐴 − 𝑦𝑡 〉 ≤ max{〈∇ 𝑓 (𝑦𝑡 ), 𝑥 − 𝑣𝐿〉, 𝜙

2 } then
11: 𝑣𝑡+1 ← 𝑣𝐴, 𝛾max ← 𝜆𝐴

1−𝜆𝐴
{away step}

12: else
13: 𝑣𝑡+1 ← Ω(∇ 𝑓 (𝑦𝑡 )), 𝛾max ← 1
14: if 〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣𝑡+1〉 < 𝜙

2 then
15: 𝜙← min{〈∇ 𝑓 (𝑦𝑡 ), 𝑦𝑡 − 𝑣𝑡+1〉, 𝜙

2 }, 𝛾max ← 0 {dual step}
16: end if
17: end if
18: if 〈𝑦𝑡 − 𝑥, 𝑦𝑡 − 𝑣𝑡+1〉 < 1

2 ‖𝑥 − 𝑦𝑡 ‖2 then
19: return cut 〈−∇ 𝑓 (𝑦𝑡 ), 𝑥〉 ≤ 〈−∇ 𝑓 (𝑦𝑡 ), 𝑣𝑡+1〉 {see Charac. 2.3}
20: end if
21: 𝛼← min{𝛾𝑡 , 𝛾max}
22: S ← {(𝜆(1 − 𝛼), 𝑣) : (𝜆, 𝑣) ∈ S} ∪ {(𝛼, 𝑣𝑡+1)}
23: 𝑦𝑡+1 ←

∑
(𝜆,𝑣) ∈S 𝜆𝑣

24: end for

In order for our approach to work, we need to provide two things: the oracle, presented in Section 4.1, and
the lifting routine, presented in Section 4.2, cf. Section 2 and Section 3.

We consider each knapsack problem in turn and try to generate inequalities that are valid for each individual
knapsack. This has the advantage that there are practically efficient oracles and more importantly efficient
lifting processes. The disadvantage is that the cuts might be weaker, since they are valid for all integer solutions
for all knapsack constraint instead of their intersection. An alternative would be to consider optimization
oracles for the complete set of knapsack constraints as done by Gu [30]. However, then either lifting becomes
more computationally demanding or one cannot use lifting.

4.1 The Linear Minimization Oracle
The process begins with a solution 𝑥★ of the LP relaxation of the MKP. We create a reduced knapsack
problem of dimension 𝑘 ∈ Z+, 𝑘 ≤ 𝑛 by removing variables of each knapsack that have integral values (0/1)
in the LP relaxation. The oracles now solve the knapsack problems (KP) for each constraint of the form
max {〈𝑐, 𝑥〉 : 〈𝑤, 𝑥〉 ≤ 𝐶, 𝑥 ∈ {0, 1}𝑛}, with 𝑐 ∈ R𝑘 , 𝑤 ∈ Z𝑘

+ , 𝐶 ∈ Z+. In practice, the dimension 𝑘 is rather
small (in our test sets, see Section 5, we observe an average 𝑘 value of 9.6 with a maximal size of 26), allowing
for efficient solution approaches. In our implementation, we use a LMO based on dynamic programming. We
note that we also apply the preprocessing improvements described by Vasilyev et al. [46], before we run the
oracle on the reduced problem.

Dynamic programming, as presented by Bellman in 1957 [6], was one of the earliest exact algorithms for
solving KPs. Toth [44] presents additional improvements to the algorithm. More recently, Boyer et al. present
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Table 1: Statistics for a branch-and-cut run with separation of local cuts for 45 generalized assignment problem
instances (left) and 21 instances that were solved to optimization by all variants (right).

variant # solved time sep. time #cuts

default 29 98.2 – –
lc0-nc-downlift 21 411.7 54.0 10858.6
lc0-nc-lifting 26 113.7 9.8 4933.6
lc1-nc-lifting 29 86.8 31.8 160244.4
lc1-nc-lifting-cmir 29 86.6 30.3 117503.9

variant # solved # nodes time

default 21 614 6.0
lc0-nc-downlift 21 1522 33.7
lc0-nc-lifting 21 657 5.3
lc1-nc-lifting 21 185 4.2
lc1-nc-lifting-cmir 21 180 4.3

massively-parallel implementations running on GPUs [12]. The space and time complexity of the dynamic
programming algorithm for KP is O(𝑘𝐶) [12], where 𝑘 is the number of items and𝐶 is the knapsack capacity.
For this work, we reuse the single-threaded, CPU-based implementation of dynamic programming available
in the open-source solver SCIP [7]. As we rely on existing implementations, we refer the interested reader to
the above references for more details on this algorithm.

4.2 The Lifting Routine
Lifting knapsack constraints has been extensively studied in literature, see [34] for a short survey with
comprehensive references. Therefore, we only briefly summarize the implemented methods here and refer
the interested reader to [34] and references therein for more details.

Let {𝑥 ∈ {0, 1}𝑛 :
∑𝑛

𝑗=1 𝑎 𝑗𝑥 𝑗 ≤ 𝑎0} be one of the original knapsack constraints (corresponding to a single
row in 𝐴𝑥 ≤ 𝑏 in (MKP)). Define [𝑛] B {1, . . . , 𝑛}, 𝐹0 B { 𝑗 ∈ [𝑛] : 𝑥★

𝑗
= 0}, and 𝐹1 B { 𝑗 ∈ [𝑛] : 𝑥★

𝑗
= 1}.

Then 𝑆 B [𝑛] \ (𝐹0 ∪ 𝐹1) are the variable indices in the reduced knapsack. The lifting procedure then lifts
a given inequality

∑
𝑗∈𝑆 𝛼 𝑗𝑥 𝑗 ≤ 𝛼0 valid for the reduced knapsack polytope {𝑥 ∈ {0, 1}𝑆 :

∑
𝑗∈𝑆 𝑎 𝑗𝑥 𝑗 ≤

𝑎0 −
∑

𝑗∈𝐹1 𝑎 𝑗 } to a valid inequality for the original knapsack by computing new coefficients 𝛽 𝑗 , 𝑗 ∈ 𝐹0 ∪ 𝐹1:∑︁
𝑗∈𝑆

𝛼 𝑗𝑥 𝑗 +
∑︁
𝑗∈𝐹1

𝛽 𝑗𝑥 𝑗 +
∑︁
𝑗∈𝐹0

𝛽 𝑗𝑥 𝑗 ≤ 𝛼0 +
∑︁
𝑗∈𝐹1

𝛽 𝑗 . (2)

We implemented algorithms known as sequential up-lifting and sequential down-lifting, respectively. The
implementation is based on dynamic programming as described by Vasilyev et al. [46].

5. Computational Experiments
We implemented the described methods in C/C++, using a developer version of SCIP 8.0.4 (githash 3dbcb38)
and CPLEX 12.10 as LP-solver. All tests were performed on a Linux cluster with 3.5 GHz Intel Xeon E5-1620
Quad-Core CPUs, having 32 GB main memory and 10 MB cache. All computations were run single-threaded
and with a time limit of one hour.

To demonstrate the advantage of using local cuts with the Frank-Wolfe approach, we run our implementation
on the generalized assignment instances from the OR-Library available at http://people.brunel.ac.uk/
~mastjjb/jeb/orlib/gapinfo.html. These instances have also been used by Avella et al. [4].

The results are presented in Table 1. Here, “default” are the default, factory settings of SCIP. The other
settings are lcX-nc-Y, where 𝑋 = 0 means that we only separate local cuts in the root node and 𝑋 = 1 means
that we separate local cuts in the whole tree; 𝑌 refers to whether we perform down lifting (𝑌 = downlift) or
up- and down lifting (𝑌 = lifting). Moreover, we append cmir if we also run complemented mixed-integer
rounding (CMIR) on the produced cut. Note that for these settings, where local cuts are enabled, we turn
the generation of all other cuts off, because this (somewhat surprisingly) showed better performance. The
CPU time in seconds (“time”) and separation time (“sep. time”) as well as number of nodes (“#nodes”) are
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given as shifted geometric means2. The number of generated cuts (“#cuts”) are arithmetic means. Note that
the iteration limit for the Frank-Wolfe algorithm is 10,000 in the root node and 1000 in the subtree. We also
reduce the effect of cut filtering allowing for more cuts to enter the main LP. Moreover, we initialize the runs
with the best know solution values as in [4].

The results show that the best version is lc1-nc-lifting, i.e., it helps to separate local cuts in every node
and perform up- and down lifting. This version is roughly 31% faster than the default settings. Applying
CMIR is not really helpful. Using only down lifting performs badly. In any case, on these instances, using
our local cuts method is a big advantage. Additional results are given in the appendix.

Some additional observations are as follows: Variant lc1-nc-lifting called local cuts separation 16,870.6
times on average. The total time for Frank-Wolfe separation is about one third of the total time. The time spent
in the oracle is 17.3 seconds on average compared to a total of 87.9 seconds for the complete Frank-Wolfe
algorithm. On average 69,968.8 calls ended running into the iteration limit, 81.2 detected optimality with a
zero gradient, 8652.9 stopped because the primal gap is small enough, and 143,155.9 stopped because the
termination criterion of Section 3.1.1. This demonstrates the effect of this criterion.

6. Conclusions and Future Work
In this paper, we presented a novel method to learn local cuts without relying on solutions of LPs in the
process. To show the effectiveness of our approach, we selected the multidimensional knapsack problem as a
case study and presented computational results to support our claims.

Solving LPs has proved to be notoriously hard to parallelize, with only minor performance improvements
reported in literature to date [33, 35]. Thus, existing methods for deriving local cuts, which rely on solving
LPs, typically run single-threaded, on CPUs. Our approach is quite fast, as demonstrated in the computational
experiments for our target problem class, but also paves the way for exploring highly parallel implementations
on heterogeneous hardware and compute accelerators. This is made possible by eliminating the dependence
on LPs and instead relying on the Frank-Wolfe algorithm. One such option we would like to explore in the
future is to derive a vectorized version of our Frank-Wolfe algorithm that could work on multiple separation
problems at the same time, increasing the computational density of the operations performed and availing of
massively parallel compute accelerators like GPUs in the process.

The presented method is generic and can be applied to any (M)IP. We have chosen one important problem
class in this paper to demonstrate the method. A natural extension of this work would be to consider other
important problem classes and evaluate the benefits of using our method on those problems - especially those
with beneficial properties as outlined in Section 3.2.
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Appendix A.

We ran two additional experiments. In the first, we try to repeat the experiments about the strength of local
cuts in the root node from [37]. As a comparison, we use the implementation of the local cuts with the
LP-based approach kindly obtained from the authors of [42] (see the beginning of Section 3 for an overview of
the method). In the second experiment, we demonstrate what happens if we use local cuts in a branch-and-cut
framework to solve multi-dimensional knapsack problems to optimality.

We start with a comparison of the gap-closed, which is defined as 100 − 100 𝑝−𝑑𝑟
𝑝−𝑑𝑙𝑝 , where 𝑝 is the optimal

primal value, 𝑑𝑟 is the dual bound at the end of the root node, and 𝑑𝑙 𝑝 is the dual bound of the first LP
at the root node. Table 2 shows the results. We use the same multi-dimensional knapsack instances as
Kaparis and Letchford: they were original randomly generated by Chu and Beasley [20] and are available at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html. The instances are organized
in blocks of 10, using 𝑛 variables, 𝑚 knapsack constraints, and a parameter 𝛼. Column “KL” shows the
gap-closed from [37]. Then the results of using the implementation of the LP-based approach (which is
also used in [37]) and our Frank-Wolfe approach are presented. For each approach, we show the average of
gap-closed, total running time in seconds, as well as separation time, number of calls, and generated violated
cuts by the local cut separation over each instance block (of 10 instances). For both approaches, we turn off
all other cuts and strong branching. Moreover, we use settings that allow 1000 rounds of local cuts, 10,000
iterations of the Frank-Wolfe algorithm in the root node, and reduce the effect of cut filtering, i.e., more cuts
are added to the LP. In each round we separate local cuts for all knapsack constraints that are available. We
also initialize the runs with the optimal value to remove the effects of primal heuristics.

The results show that the LP-based approach achieves similar gap-closed values as Kaparis and Letchford.
One explanation for the differences are that the final gap depends on the particular points to be separated (but
note that we do not generate rank-2 cuts). In comparison, the Frank-Wolfe approach is much faster, but also
produces a smaller gap-closed. There are again several reasons for the differences: We limit the number of
Frank-Wolfe iterations to 10,000 in the root node, which will leave some separation problems to be undecided
and the Frank-Wolfe algorithm might fail to converge (for instance, for 𝑛 = 500, 𝑚 = 5, 𝛼 = 75, on average
34.8 Frank-Wolfe runs terminated in the iteration limit and 75.4 with the termination criterion explained in
Section 2). Moreover, the Frank-Wolfe approach does not necessarily produce a facet, which can weaken the
bounds.

Table 3 shows results for running a complete branch-and-cut, but local cuts are still only generated in the root
node (they might, however, be added later from the pool). As a comparison, we use the default settings of
SCIP, but reduce cut filtering (this produces slightly better results for these instances). The results show that
for smaller instances, there is no clear advantage of the Frank-Wolfe approach, but larger instances, it solves
more instances and is faster.
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Table 2: Gap closed and running times after the root node for the multi-dimensional knapsack instances; each
line represents the average over 10 instances.

LP FW

gap sepa gap sepa
𝑚 𝑛 𝛼 KL closed time time #calls #cuts closed time time #calls #cuts

100 5 25 17.96 18.88 1.60 1.60 26.1 113.0 12.54 0.77 0.76 21.3 78.4
100 5 50 21.65 22.36 2.13 2.12 29.3 124.5 15.55 0.88 0.87 20.8 77.7
100 5 75 22.88 23.19 2.18 2.17 28.8 122.9 16.91 0.96 0.95 21.3 85.8
100 10 25 5.55 5.75 2.69 2.68 14.5 105.7 2.73 0.80 0.79 8.0 43.0
100 10 50 7.33 7.63 3.62 3.62 16.5 120.1 4.30 1.50 1.49 11.4 59.2
100 10 75 7.23 7.44 2.71 2.71 14.0 100.6 4.37 1.29 1.29 10.7 51.5
100 30 25 0.16 0.14 2.89 2.87 2.4 12.0 0.00 1.05 1.05 0.2 0.1
100 30 50 0.49 0.47 4.45 4.44 4.9 38.2 0.02 0.84 0.83 0.6 0.7
100 30 75 0.52 0.53 4.30 4.29 4.8 35.9 0.07 1.02 1.01 0.8 0.7
250 5 25 14.56 15.44 4.03 4.00 36.3 161.0 8.03 1.08 1.06 20.4 77.6
250 5 50 15.68 14.83 6.57 6.54 38.7 172.1 7.87 1.74 1.73 20.3 78.0
250 5 75 17.48 16.98 7.42 7.39 36.6 165.3 10.45 2.58 2.56 22.5 87.5
250 10 25 4.53 3.98 6.17 6.15 17.5 128.7 1.83 1.51 1.50 10.4 49.7
250 10 50 4.48 4.11 6.52 6.48 17.4 130.8 1.60 1.49 1.48 8.4 46.2
250 10 75 5.03 4.73 8.54 8.51 18.5 141.3 2.10 2.12 2.11 9.5 51.4
500 5 25 13.80 11.75 10.37 10.31 42.0 182.9 5.96 2.84 2.81 20.9 78.4
500 5 50 11.91 11.17 17.41 17.35 45.2 199.2 5.02 5.21 5.19 21.5 84.0
500 5 75 13.70 11.75 22.53 22.48 41.5 190.0 5.62 7.63 7.60 22.4 85.4

Table 3: Statistics for a branch-and-cut run with separation of local cuts at the root node for the multi-
dimensional knapsack instances; each line represents average values over 10 instances.

base FW

𝑛 𝑚 𝛼 #solved time #solved time sep time

100 5 25 10 11.76 10 16.34 11.37
100 5 50 10 7.61 10 13.74 9.94
100 5 75 10 4.88 10 8.53 6.65
100 10 25 10 47.49 10 40.27 7.24
100 10 50 10 44.48 10 34.42 9.93
100 10 75 10 16.44 10 17.48 8.70
100 30 25 10 558.98 10 450.74 2.07
100 30 50 10 497.33 10 394.16 1.73
100 30 75 10 118.77 10 89.10 2.48
250 5 25 10 83.72 10 84.23 12.79
250 5 50 10 125.84 10 128.81 13.17
250 5 75 10 53.20 10 61.66 16.81
250 10 25 0 3600.01 2 3308.03 16.83
250 10 50 1 3528.15 1 3500.16 10.92
250 10 75 6 2062.86 8 1612.52 20.70
500 5 25 8 1883.73 10 1488.56 14.53
500 5 50 7 1422.77 9 999.48 19.84
500 5 75 9 676.14 10 485.21 20.73
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